Electrophysiological properties of Achlya hyphae: ionic currents studied by intracellular potential recording

نویسنده

  • D L Kropf
چکیده

The electrical properties of the water mold Achlya bisexualis were investigated using intracellular microelectrodes. Hyphae growing in a defined medium maintained a membrane potential (Vm) of -150 to -170 mV, interior negative. Under the conditions used here, this potential was insensitive to changes in the inorganic ion composition of the medium. Changes in external pH did affect Vm, but only outside the physiological pH range. By contrast, the addition of respiratory inhibitors caused a rapid depolarization without affecting the conductance of the plasma membrane. Taken together these findings strongly suggest that the membrane potential is governed by an electrogenic ion pump rather than by an ionic diffusion potential. Previous work from this laboratory showed that Achlya hyphae generate a transcellular proton current that enters the growing tip, flows along the hyphal length, and exits distally from the trunk. These initial experiments used an extracellular vibrating electrode, and I now report intracellular electrical recordings which support the hypothesis that protons enter the tip by symport with amino acids and are expelled distally by a proton-translocating ATPase. Most significantly, current flowing intracellularly along the hyphal length is associated with a cytoplasmic electric field of 0.2 V/cm or greater. Conditions that inhibit the current also abolish the internal field, suggesting that these two phenomena are closely linked.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrophysiological Properties of Achlya Hyphae: Ionic Currents Studied by Intracellular Potential Recording

The electrical properties of the water mold Achlya bisexualis were investigated using intracellular microelectrodes. Hyphae growing in a defined medium maintained a membrane potential (Vm) of 150 to -170 mV, interior negative. Under the conditions used here, this potential was insensitive to changes in the inorganic ion composition of the medium. Changes in external pH did affect Vm, but only o...

متن کامل

Comparison of the effect of quasitrapezoidal and rectangular pulses on bio- electrical activity, calcium spike properties and afterhyperpolarization potentials of Fl cells of Helix aspersa using intracellular recording

  While the effect of changes of stimulus waveform (quasitrapezoidal and rectangular current pulses) on nerve activation is clear, but there is no evidence on the effect of quasitrapezoidal pulses on ionic currents of cellular membrane. In the present study, the effect of depolarizing quasi-trapezoidal current pulses, in comparison with that of depolarizing rectangular current pulses, on firing...

متن کامل

Effects of Dorema ammoniacum Gum on Neuronal Epileptiform Activity-Induced by Pentylenetetrazole

Epilepsy is a chronic neurological disease which disrupts the neuronal electrical activity. One-third of patients are resistant to treatment with available antiepileptic agents. The use of herbal medicine for treating several diseases including epilepsy is on the rise. Therefore, further investigation is required to verify the safety and effectiveness of Phytomedicine in treating diseases. The ...

متن کامل

Effects of Dorema ammoniacum Gum on Neuronal Epileptiform Activity-Induced by Pentylenetetrazole

Epilepsy is a chronic neurological disease which disrupts the neuronal electrical activity. One-third of patients are resistant to treatment with available antiepileptic agents. The use of herbal medicine for treating several diseases including epilepsy is on the rise. Therefore, further investigation is required to verify the safety and effectiveness of Phytomedicine in treating diseases. The ...

متن کامل

Existence of a delayed rectifier K+ current in the membrane of human embryonic stem cel

Introduction: Human embryonic stem cells (hESCs) are pluripotent cells that can proliferate and differentiate to many cell types. Their electrophysiological properties have not yet been chracterzed. In this study, the passive properties (such as resting membrane potential, input resistance and capacitance) and the contribution of delayed rectifier K+ channel currents to the membrane conducta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 102  شماره 

صفحات  -

تاریخ انتشار 1986